
The Quick Tour
Version: 4.0

generated on May 16, 2018

What could be better to make up your own mind than to try out Symfony yourself? Aside from
a little time, it will cost you nothing. Step by step you will explore the Symfony universe. Be
careful, Symfony can become addictive from the very first encounter!

The Quick Tour (4.0)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same, similar or a compatible license. For any reuse or distribution, you must make clear to
others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

The Big Picture ...4
Flex: Compose your Application ...8
The Architecture ...13

PDF brought to you by

generated on May 16, 2018

Contents at a Glance | iii

http://sensiolabs.com

Listing 1-1

Listing 1-2

Listing 1-3

Chapter 1

The Big Picture

Start using Symfony in 10 minutes! Really! That's all you need to understand the most important concepts
and start building a real project!

If you've used a web framework before, you should feel right at home with Symfony. If not, welcome
to a whole new way of developing web applications. Symfony embraces best practices, keeps backwards
compatibility (Yes! Upgrading is always safe & easy!) and offers long-term support.

Downloading Symfony

First, make sure you've installed Composer1 and have PHP 7.1.3 or higher.

Ready? In a terminal, run:

1 $ composer create-project symfony/skeleton quick_tour

This creates a new quick_tour/ directory with a small, but powerful new Symfony application:

1
2
3
4
5
6
7
8
9
10
11
12

quick_tour/
├─ .env
├─ .env.dist
├─ bin/console
├─ composer.json
├─ composer.lock
├─ config/
├─ public/index.php
├─ src/
├─ symfony.lock
├─ var/
└─ vendor/

Can we already load the project in a browser? Of course! You can setup Nginx or Apache and configure
their document root to be the public/ directory. But, for development, Symfony has its own server.
Install and run it with:

1. https://getcomposer.org/

PDF brought to you by

generated on May 16, 2018

Chapter 1: The Big Picture | 4

http://sensiolabs.com

Listing 1-4

Listing 1-5

1
2

$ composer require server --dev
$ php bin/console server:start

Try your new app by going to http://localhost:8000 in a browser!

Fundamentals: Route, Controller, Response
Our project only has about 15 files, but it's ready to become an sleek API, a robust web app, or a
microservice. Symfony starts small, but scales with you.

But before we go too far, let's dig into the fundamentals by building our first page.

Start in config/routes.yaml: this is where we can define the URL to our new page. Uncomment the
example that already lives in the file:

1
2
3
4

config/routes.yaml
index:

path: /
controller: 'App\Controller\DefaultController::index'

This is called a route: it defines the URL to your page (/) and the "controller": the function that will be
called whenever anyone goes to this URL. That function doesn't exist yet, so let's create it!

In src/Controller, create a new DefaultController class and an index method inside:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Controller/DefaultController.php
namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;

class DefaultController
{

public function index()
{

return new Response('Hello!');
}

}

That's it! Try going to the homepage: http://localhost:8000/. Symfony sees that the URL matches
our route and then executes the new index() method.

PDF brought to you by

generated on May 16, 2018

Chapter 1: The Big Picture | 5

http://sensiolabs.com

Listing 1-6

Listing 1-7

Listing 1-8

Listing 1-9

Listing 1-10

Listing 1-11

A controller is just a normal function with one rule: it must return a Symfony Response object. But that
response can contain anything: simple text, JSON or a full HTML page.

But the routing system is much more powerful. So let's make the route more interesting:

1
2
3
4
5

config/routes.yaml
index:
- path: /
+ path: /hello/{name}

controller: 'App\Controller\DefaultController::index'

The URL to this page has changed: it is now /hello/*: the {name} acts like a wildcard that matches
anything. And it gets better! Update the controller too:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// src/Controller/DefaultController.php
namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;

class DefaultController
{
- public function index()
+ public function index($name)

{
- return new Response('Hello!');
+ return new Response("Hello $name!");

}
}

Try the page out by going to http://localhost:8000/hello/Symfony. You should see: Hello
Symfony! The value of the {name} in the URL is available as a $name argument in your controller.

But this can be even simpler! So let's install annotations support:

1 $ composer require annotations

Now, comment-out the YAML route by adding the # character:

1
2
3
4

config/routes.yaml
index:
path: /hello/{name}
controller: 'App\Controller\DefaultController::index'

Instead, add the route right above the controller method:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/Controller/DefaultController.php
namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;
+ use Symfony\Component\Routing\Annotation\Route;

class DefaultController
{
+ /**
+ * @Route("/hello/{name}")
+ */

public function index($name) {
// ...

}
}

This works just like before! But by using annotations, the route and controller live right next to each
other. Need another page? Just add another route and method in DefaultController:

PDF brought to you by

generated on May 16, 2018

Chapter 1: The Big Picture | 6

http://sensiolabs.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

// src/Controller/DefaultController.php
namespace App\Controller;

use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\Routing\Annotation\Route;

class DefaultController
{

// ...

/**
* @Route("/simplicity")
*/
public function simple()
{

return new Response('Simple! Easy! Great!');
}

}

Routing can do even more, but we'll save that for another time! Right now, our app needs more features!
Like a template engine, logging, debugging tools and more.

Keep reading with Flex: Compose your Application.

PDF brought to you by

generated on May 16, 2018

Chapter 1: The Big Picture | 7

http://sensiolabs.com

Listing 2-1

Listing 2-2

Chapter 2

Flex: Compose your Application

After reading the first part of this tutorial, you have decided that Symfony was worth another 10 minutes.
Great choice! In this second part, you'll learn about Symfony Flex: the amazing tool that makes adding
new features as simple as running one command. It's also the reason why Symfony is ideal for a small
micro-service or a huge application. Curious? Perfect!

Symfony: Start Micro!
Unless you're building a pure API (more on that soon!), you'll probably want to render HTML. To do
that, you'll use Twig1. Twig is a flexible, fast, and secure template engine for PHP. It makes your templates
more readable and concise; it also makes them more friendly for web designers.

Is Twig already installed in our application? Actually, not yet! And that's great! When you start a new
Symfony project, it's small: only the most critical dependencies are included in your composer.json
file:

1
2
3
4
5
6
7

"require": {
"...",
"symfony/console": "^4.1",
"symfony/flex": "^1.0",
"symfony/framework-bundle": "^4.1",
"symfony/yaml": "^4.1"

}

This makes Symfony different than any other PHP framework! Instead of starting with a bulky app with
every possible feature you might ever need, a Symfony app is small, simple and fast. And you're in total
control of what you add.

Flex Recipes and Aliases
So how can we install and configure Twig? Just run one command:

1. https://twig.symfony.com/

PDF brought to you by

generated on May 16, 2018

Chapter 2: Flex: Compose your Application | 8

http://sensiolabs.com

Listing 2-3

Listing 2-4

1 $ composer require twig

Two very interesting things happen behind the scenes thanks to Symfony Flex: a Composer plugin that
is already installed in our project.

First, twig is not the name of a Composer package: it's a Flex alias that points to symfony/twig-
bundle. Flex resolves that alias for Composer.

And second, Flex installs a recipe for symfony/twig-bundle. What's a recipe? It's a way for a library
to automatically configure itself by adding and modifying files. Thanks to recipes, adding features is
seamless and automated: install a package and you're done!

You can find a full list of recipes and aliases by going to https://symfony.sh.

What did this recipe do? In addition to automatically enabling the feature in config/bundles.php, it
added 3 things:
config/packages/twig.yamlconfig/packages/twig.yaml

A configuration file that sets up Twig with sensible defaults.

config/routes/dev/twig.yamlconfig/routes/dev/twig.yaml

A route that helps you debug your error pages.

templates/templates/

This is the directory where template files will live. The recipe also added a base.html.twig layout file.

Twig: Rendering a Template
Thanks to Flex, after one command, you can start using Twig immediately:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// src/Controller/DefaultController.php
namespace App\Controller;

use Symfony\Component\Routing\Annotation\Route;
- use Symfony\Component\HttpFoundation\Response;
+ use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

-class DefaultController
+class DefaultController extends AbstractController
{

/**
* @Route("/hello/{name}")
*/
public function index($name)
{

- return new Response("Hello $name!");
+ return $this->render('default/index.html.twig', [
+ 'name' => $name,
+]);

}

By extending AbstractController, you now have access to a number of shortcut methods and tools,
like render(). Create the new template:

1
2

{# templates/default/index.html.twig #}
<h1>Hello {{ name }}</h1>

That's it! The {{ name }} syntax will print the name variable that's passed in from the controller. If
you're new to Twig, welcome! You'll learn more about its syntax and power later.

But, right now, the page only contains the h1 tag. To give it an HTML layout, extend base.html.twig:

PDF brought to you by

generated on May 16, 2018

Chapter 2: Flex: Compose your Application | 9

https://symfony.sh
http://sensiolabs.com

Listing 2-5

Listing 2-6

Listing 2-7

Listing 2-8

1
2
3
4
5
6

{# templates/default/index.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
<h1>Hello {{ name }}</h1>

{% endblock %}

This is called template inheritance: our page now inherits the HTML structure from base.html.twig.

Profiler: Debugging Paradise
One of the coolest features of Symfony isn't even installed yet! Let's fix that:

1 $ composer require profiler

Yes! This is another alias! And Flex also installs another recipe, which automates the configuration of
Symfony's Profiler. What's the result? Refresh!

See that black bar on the bottom? That's the web debug toolbar, and it's your new best friend. By hovering
over each icon, you can get information about what controller was executed, performance information,
cache hits & misses and a lot more. Click any icon to go into the profiler where you have even more
detailed debugging and performance data!

Oh, and as you install more libraries, you'll get more tools (like a web debug toolbar icon that shows
database queries).

Using the profiler is easy because it configured itself thanks to the recipe. What else can we install this
easily?

Rich API Support
Are you building an API? You can already return JSON easily from any controller:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

// src/Controller/DefaultController.php
namespace App\Controller;

use Symfony\Component\Routing\Annotation\Route;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class DefaultController extends AbstractController
{

// ...

/**
* @Route("/api/hello/{name}")
*/
public function apiExample($name)
{

return $this->json([
'name' => $name,
'symfony' => 'rocks',

]);
}

}

But for a truly rich API, try installing Api Platform2:

1 $ composer require api

2. https://api-platform.com/

PDF brought to you by

generated on May 16, 2018

Chapter 2: Flex: Compose your Application | 10

http://sensiolabs.com

Listing 2-9

Listing 2-10

Listing 2-11

Listing 2-12

This is an alias to api-platform/api-pack, which has dependencies on several other packages, like
Symfony's Validator and Security components, as well as the Doctrine ORM. In fact, Flex installed 5
recipes!

But like usual, we can immediately start using the new library. Want to create a rich API for a product
table? Create a Product entity and give it the @ApiResource() annotation:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

// src/Entity/Product.php
namespace App\Entity;

use ApiPlatform\Core\Annotation\ApiResource;
use Doctrine\ORM\Mapping as ORM;

/**
* @ORM\Entity()
* @ApiResource()
*/
class Product
{

/**
* @ORM\Id
* @ORM\GeneratedValue(strategy="AUTO")
* @ORM\Column(type="integer")
*/
private $id;

/**
* @ORM\Column(type="string")
*/
private $name;

/**
* @ORM\Column(type="int")
*/
private $price;

// ...
}

Done! You now have endpoints to list, add, update and delete products! Don't believe me? List your
routes by running:

1 $ php bin/console debug:router

1
2
3
4
5
6
7
8
9
10

------------------------------ -------- -------------------------------------
Name Method Path
------------------------------ -------- -------------------------------------
api_products_get_collection GET /api/products.{_format}
api_products_post_collection POST /api/products.{_format}
api_products_get_item GET /api/products/{id}.{_format}
api_products_put_item PUT /api/products/{id}.{_format}
api_products_delete_item DELETE /api/products/{id}.{_format}
...
------------------------------ -------- -------------------------------------

Easily Remove Recipes
Not convinced yet? No problem: remove the library:

1 $ composer remove api

Flex will uninstall the recipes: removing files and un-doing changes to put your app back in its original
state. Experiment without worry.

PDF brought to you by

generated on May 16, 2018

Chapter 2: Flex: Compose your Application | 11

http://sensiolabs.com

More Features, Architecture and Speed
I hope you're as excited about Flex as I am! But we still have one more chapter, and it's the most
important yet. I want to show you how Symfony empowers you to quickly build features without
sacrificing code quality or performance. It's all about the service container, and it's Symfony's super
power. Read on: about The Architecture.

PDF brought to you by

generated on May 16, 2018

Chapter 2: Flex: Compose your Application | 12

http://sensiolabs.com

Listing 3-1

Listing 3-2

Chapter 3

The Architecture

You are my hero! Who would have thought that you would still be here after the first two parts? Your
efforts will be well-rewarded soon. The first two parts didn't look too deeply at the architecture of
the framework. Because it makes Symfony stand apart from the framework crowd, let's dive into the
architecture now.

Add Logging
A new Symfony app is micro: it's basically just a routing & controller system. But thanks to Flex,
installing more features is simple.

Want a logging system? No problem:

1 $ composer require logger

This installs and configures (via a recipe) the powerful Monolog1 library. To use the logger in a controller,
add a new argument type-hinted with LoggerInterface:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// src/Controller/DefaultController.php
namespace App\Controller;

use Psr\Log\LoggerInterface;
use Symfony\Component\Routing\Annotation\Route;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class DefaultController extends AbstractController
{

/**
* @Route("/hello/{name}")
*/
public function index($name, LoggerInterface $logger)
{

$logger->info("Saying hello to $name!");

// ...

1. https://github.com/Seldaek/monolog

PDF brought to you by

generated on May 16, 2018

Chapter 3: The Architecture | 13

http://sensiolabs.com

Listing 3-3

Listing 3-4

Listing 3-5

18
19

}
}

That's it! The new log message will be written to var/log/dev.log. Of course, this can be configured
by updating one of the config files added by the recipe.

Services & Autowiring

But wait! Something very cool just happened. Symfony read the LoggerInterface type-hint and
automatically figured out that it should pass us the Logger object! This is called autowiring.

Every bit of work that's done in a Symfony app is done by an object: the Logger object logs things and
the Twig object renders templates. These objects are called services and they are tools that help you build
rich features.

To make life awesome, you can ask Symfony to pass you a service by using a type-hint. What other
possible classes or interfaces could you use? Find out by running:

1 $ php bin/console debug:autowiring

Class/Interface Type Alias Service ID

Psr\Cache\CacheItemPoolInterface alias for "cache.app.recorder"

Psr\Log\LoggerInterface alias for "monolog.logger"

Symfony\Component\EventDispatcher\EventDispatcherInterface alias for "debug.event_dispatcher"

Symfony\Component\HttpFoundation\RequestStack alias for "request_stack"

Symfony\Component\HttpFoundation\Session\SessionInterface alias for "session"

Symfony\Component\Routing\RouterInterface alias for "router.default"

This is just a short summary of the full list! And as you add more packages, this list of tools will grow!

Creating Services
To keep your code organized, you can even create your own services! Suppose you want to generate a
random greeting (e.g. "Hello", "Yo", etc). Instead of putting this code directly in your controller, create a
new class:

1
2
3
4
5
6
7
8
9
10
11
12
13

// src/GreetingGenerator.php
namespace App;

class GreetingGenerator
{

public function getRandomGreeting()
{

$greetings = ['Hey', 'Yo', 'Aloha'];
$greeting = $greetings[array_rand($greetings)];

return $greeting;
}

}

Great! You can use this immediately in your controller:

PDF brought to you by

generated on May 16, 2018

Chapter 3: The Architecture | 14

http://sensiolabs.com

Listing 3-6

Listing 3-7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

// src/Controller/DefaultController.php
namespace App\Controller;

use App\GreetingGenerator;
use Psr\Log\LoggerInterface;
use Symfony\Component\Routing\Annotation\Route;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;

class DefaultController extends AbstractController
{

/**
* @Route("/hello/{name}")
*/
public function index($name, LoggerInterface $logger, GreetingGenerator $generator)
{

$greeting = $generator->getRandomGreeting();

$logger->info("Saying $greeting to $name!");

// ...
}

}

That's it! Symfony will instantiate the GreetingGenerator automatically and pass it as an argument.
But, could we also move the logger logic to GreetingGenerator? Yes! You can use autowiring inside
a service to access other services. The only difference is that it's done in the constructor:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

// src/GreetingGenerator.php
+ use Psr\Log\LoggerInterface;

class GreetingGenerator
{
+ private $logger;
+
+ public function __construct(LoggerInterface $logger)
+ {
+ $this->logger = $logger;
+ }

public function getRandomGreeting()
{

// ...

+ $this->logger->info('Using the greeting: '.$greeting);

return $greeting;
}

}

Yes! This works too: no configuration, no time wasted. Keep coding!

Twig Extension & Autoconfiguration
Thanks to Symfony's service handling, you can extend Symfony in many ways, like by creating an event
subscriber or a security voter for complex authorization rules. Let's add a new filter to Twig called greet.
How? Just create a class that extends AbstractExtension:

1
2
3
4
5
6
7

// src/Twig/GreetExtension.php
namespace App\Twig;

use App\GreetingGenerator;
use Twig\Extension\AbstractExtension;
use Twig\TwigFilter;

PDF brought to you by

generated on May 16, 2018

Chapter 3: The Architecture | 15

http://sensiolabs.com

Listing 3-8

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

class GreetExtension extends AbstractExtension
{

private $greetingGenerator;

public function __construct(GreetingGenerator $greetingGenerator)
{

$this->greetingGenerator = $greetingGenerator;
}

public function getFilters()
{

return [
new TwigFilter('greet', [$this, 'greetUser']),

];
}

public function greetUser($name)
{

$greeting = $this->greetingGenerator->getRandomGreeting();

return "$greeting $name!";
}

}

After creating just one file, you can use this immediately:

1
2
3

{# templates/default/index.html.twig #}
{# Will print something like "Hey Symfony!" #}
<h1>{{ name|greet }}</h1>

How does this work? Symfony notices that your class extends AbstractExtension and so
automatically registers it as a Twig extension. This is called autoconfiguration, and it works for many
many things. Just create a class and then extend a base class (or implement an interface). Symfony takes
care of the rest.

Blazing Speed: The Cached Container
After seeing how much Symfony handles automatically, you might be wondering: "Doesn't this hurt
performance?" Actually, no! Symfony is blazing fast.

How is that possible? The service system is managed by a very important object called the "container".
Most frameworks have a container, but Symfony's is unique because it's cached. When you loaded your
first page, all of the service information was compiled and saved. This means that the autowiring and
autoconfiguration features add no overhead! It also means that you get great errors: Symfony inspects
and validates everything when the container is built.

Now you might be wondering what happens when you update a file and the cache needs to rebuild? I
like you're thinking! It's smart enough to rebuild on the next page load. But that's really the topic of the
next section.

Development Versus Production: Environments
One of a framework's main jobs is to make debugging easy! And our app is full of great tools for this:
the web debug toolbar displays at the bottom of the page, errors are big, beautiful & explicit, and any
configuration cache is automatically rebuilt whenever needed.

But what about when you deploy to production? We will need to hide those tools and optimize for speed!

This is solved by Symfony's environment system and there are three: dev, prod and test. Based on the
environment, Symfony loads different files in the config/ directory:

PDF brought to you by

generated on May 16, 2018

Chapter 3: The Architecture | 16

http://sensiolabs.com

Listing 3-9

Listing 3-10

Listing 3-11

Listing 3-12

Listing 3-13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

config/
├─ services.yaml
├─ ...
└─ packages/

├─ framework.yaml
├─ ...
├─ **dev/**

├─ monolog.yaml
└─ ...

├─ **prod/**
└─ monolog.yaml

└─ **test/**
├─ framework.yaml
└─ ...

└─ routes/
├─ annotations.yaml
└─ **dev/**

├─ twig.yaml
└─ web_profiler.yaml

This is a powerful idea: by changing one piece of configuration (the environment), your app is
transformed from a debugging-friendly experience to one that's optimized for speed.

Oh, how do you change the environment? Change the APP_ENV environment variable from dev to
prod:

1
2
3

.env
- APP_ENV=dev
+ APP_ENV=prod

But I want to talk more about environment variables next. Change the value back to dev: debugging
tools are great when you're working locally.

Environment Variables
Every app contains configuration that's different on each server - like database connection information or
passwords. How should these be stored? In files? Or some other way?

Symfony follows the industry best practice by storing server-based configuration as environment
variables. This means that Symfony works perfectly with Platform as a Service (PaaS) deployment systems
as well as Docker.

But setting environment variables while developing can be a pain. That's why your app automatically
loads a .env file, if the APP_ENV environment variable isn't set in the environment. The keys in this file
then become environment variables and are read by your app:

1
2
3
4
5

.env
###> symfony/framework-bundle ###
APP_ENV=dev
APP_SECRET=cc86c7ca937636d5ddf1b754beb22a10
###< symfony/framework-bundle ###

At first, the file doesn't contain much. But as your app grows, you'll add more configuration as you need
it. But, actually, it gets much more interesting! Suppose your app needs a database ORM. Let's install the
Doctrine ORM:

1 $ composer require doctrine

Thanks to a new recipe installed by Flex, look at the .env file again:

PDF brought to you by

generated on May 16, 2018

Chapter 3: The Architecture | 17

http://sensiolabs.com

1
2
3
4
5
6
7
8
9

###> symfony/framework-bundle ###
APP_ENV=dev
APP_SECRET=cc86c7ca937636d5ddf1b754beb22a10
###< symfony/framework-bundle ###

+ ###> doctrine/doctrine-bundle ###
+ # ...
+ DATABASE_URL=mysql://db_user:db_password@127.0.0.1:3306/db_name
+ ###< doctrine/doctrine-bundle ###

The new DATABASE_URL environment variable was added automatically and is already referenced by
the new doctrine.yaml configuration file. By combining environment variables and Flex, you're using
industry best practices without any extra effort.

Keep Going!
Call me crazy, but after reading this part, you should be comfortable with the most important parts of
Symfony. Everything in Symfony is designed to get out of your way so you can keep coding and adding
features, all with the speed and quality you demand.

That's all for the quick tour. From authentication, to forms, to caching, there is so much more to
discover. Ready to dig into these topics now? Look no further - go to the official Symfony Documentation
and pick any guide you want.

PDF brought to you by

generated on May 16, 2018

Chapter 3: The Architecture | 18

http://sensiolabs.com

	The Quick Tour Version: 4.0 generated on May 16, 2018
	What could be better to make up your own mind than to try out Symfony yourself? Aside from a little time, it will cost you nothing. Step by step you will explore the Symfony universe. Be careful, Symfony can become addictive from the very first encounter!

	Contents at a Glance
	The Big Picture
	Downloading Symfony
	Fundamentals: Route, Controller, Response

	Flex: Compose your Application
	Symfony: Start Micro!
	Flex Recipes and Aliases
	Twig: Rendering a Template
	Profiler: Debugging Paradise
	Rich API Support
	Easily Remove Recipes
	More Features, Architecture and Speed

	The Architecture
	Add Logging
	Services & Autowiring
	Creating Services
	Twig Extension & Autoconfiguration
	Blazing Speed: The Cached Container
	Development Versus Production: Environments
	Environment Variables
	Keep Going!

